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Abstract

Characterizing and classifying molecular variation within biological samples is critical for 

determining fundamental mechanisms of biological processes that will lead to new insights 

including improved disease understanding.  Towards these ends, time-of-flight secondary ion 

mass spectrometry (ToF-SIMS) was used to examine increasingly complex samples of biological 

relevance, including monosaccharide isomers, pure proteins, complex protein mixtures, and 

mouse embryo tissues. The complex mass spectral data sets produced were analyzed using five 

common statistical and chemometric multivariate analysis techniques: principal component 

analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis 

(PLSDA), soft independent modeling of class analogy (SIMCA), and decision tree analysis by 

recursive partitioning.  PCA was found to be a valuable first step in multivariate analysis, 

providing insight both into the relative groupings of samples and into the molecular basis for 

those groupings.  For the monosaccharides, pure proteins and protein mixture samples, all of 

LDA, PLSDA, and SIMCA were found to produce excellent classification given a sufficient 

number of compound variables calculated.  For the mouse embryo tissues, however, SIMCA did 

not produce as accurate a classification.  The decision tree analysis was found to be the least 

successful for all the data sets, providing neither as accurate a classification nor chemical insight 

for any of the tested samples. Based on these results we conclude that as the complexity of the 

sample increases, so must the sophistication of the multivariate technique used to classify the 

samples.  PCA is a preferred first step for understanding ToF-SIMS data that can be followed by 

either LDA or PLSDA for effective classification analysis.  This study demonstrates the strength

of ToF-SIMS combined with multivariate statistical and chemometric techniques to classify 

increasingly complex biological samples. Applying these techniques to information-rich mass 



spectral data sets opens the possibilities for new applications including classification of subtly 

different biological samples that may provide insights into cellular processes, disease progress, 

and disease diagnosis.

Introduction

Biological systems are exceptionally complex, with perturbations of an organism most 

often evidenced as changes in multiple biological pathways.  For this reason, it is increasingly 

apparent that molecular patterns or “fingerprints,” which capture significantly more biological 

information, may be more useful than single-molecule markers for detecting, classifying and 

understanding biological changes.  Analytical techniques that probe multiple biological 

molecules of interest, such as mass spectrometry or DNA or protein arrays, are thus finding 

increasing application to biological questions, especially the difficult problem of informed

disease diagnosis and prognosis. Of particular interest is the ability to assign an unknown 

sample to a known class by comparing the molecular patterns in the unknown with molecular 

signatures of the known group.  This approach for gene array analysis is being used extensively 

in cancer biology as a means to classify tumors according to cancer phenotype, as reviewed by 

Brentani et al.1 and Macgregor. 2

We are developing methods to use the information-rich spectral data generated by time-

of-flight secondary ion mass spectrometry (ToF-SIMS) to classify biological samples.  ToF-

SIMS is a surface-sensitive mass spectral analysis technique used to detect and localize chemical 

and molecular information from sample surfaces. ToF-SIMS instruments use a finely focused 

(optimal spot size of 150 nm) energetic primary ion beam to desorb secondary molecular and 

fragment ions into a time-of-flight mass spectrometer. These ions can be recorded either as a 

single spectrum from a sample surface, or as a mass spectral image where each pixel is a 



complete mass spectrum.  These mass spectral images can then be analyzed as molecular images 

of single peaks or as an average mass spectrum of a defined area.

Although used routinely for inorganic sample analysis, ToF-SIMS is gaining increasing 

popularity for the analysis of biomaterials and biological samples.3-6  The analysis of biological 

samples presents unique challenges to ToF-SIMS as these samples are at the same time 

enormously complex and quite similar to one another. Additionally, important constituents of the 

sample are frequently present at extremely low concentrations. The complexity of biological 

samples creates complex mass spectra that are difficult if not impossible to interpret by visual 

inspection. Multivariate analysis and pattern recognition techniques are widely employed for 

interpretation of such data sets, as they reduce the data complexity and illuminate distinguishing 

features from the data. 

A good deal of recent work has focused on the use of multivariate analysis techniques on 

ToF-SIMS data of biological samples. We have shown classification of monsaccharides by PCA 

and LDA7 and our group as well as others have reported multivariate analysis of pure proteins 

adsorbed to surfaces and of protein mixtures,8 reviewed by Michel et al.5 Jungnickel and 

coworkers have used PCA to discriminate yeast strains,9 the Vickerman group has discriminated

different types of bacteria10, 11 and our group has distinguished between human breast cancer cell 

lines8 and mouse embryo tissues.12 Many more recent examples have focused on different types 

of multivariate analyses, especially imaging analysis, rather than on a specific biological 

question of interest.13-15

This work extends previously published analyses of ToF-SIMS data by analyzing more 

complex and biologically relevant samples and by comparing a wider variety of multivariate 

methods for spectral analysis.  This study focuses specifically on the task of classification of 



samples based on the analysis of a training set of spectra with known groupings. Traditionally, 

such classification has been accomplished by different methods depending on whether the 

analyst is a chemist or statistician by training.  Chemists tend to use a subset of mathematical and 

statistical techniques commonly referred to as “chemometrics,” which were developed 

specifically by chemists for chemical applications.  Statisticians, on the other hand, tend to be 

more focused on general methods that satisfy various mathematical optimality properties.   The

research of these communities has, however, overlapped from time to time.16, 17 We have 

attempted to bridge the divide between the two communities by comparing the utility of five 

different chemometric and statistical techniques to the analysis and classification of ToF-SIMS 

spectral data.  After analysis by PCA, commonly used by both chemometricians and statisticians, 

we have applied the common chemometric techniques of partial least squares discriminant 

analysis and soft independent modeling of class analogy and the statistical techniques of linear 

discriminant analysis and decision tree analysis for sample classification.

Principal Component Analysis (PCA) is an unsupervised multivariate technique that

reduces a large data matrix to a few composite variables that can be visualized and interpreted 

using a series of simple plots. PCA reduces the data complexity by calculating new variables,

called principal components, which represent linear combinations of the original variables and 

capture the greatest variation in the data set. PCA is a descriptive rather than classification 

technique; PCA does not classify samples into groups but rather helps a researcher to understand 

the relationships among sample groups and to identify variables important for explaining those 

differences between samples.  While there have been several reports in the literature of PCA 

being adapted for classification (18-20 among others), it was neither designed nor optimized for 



this purpose.21  We have therefore chosen to classify samples using a few of the statistical and 

chemometeric techniques specifically optimized for classification.16, 22

Linear discriminant analysis (LDA) is a supervised, multivariate statistical technique 

which specifically attempts to model the differences between classes in a data set.22 LDA uses

the known classes defined in the data set to calculate linear combinations of the original 

variables, called canonical variates, that maximize the ratio of the between-group variance to the 

within-group variance and are uncorrelated with each other. The LDA model thus created can 

then be used to predict the class membership of additional samples.  The nature of the LDA 

calculations necessitates that the number of input variables be less than the number of samples in 

a given data set.  In order to meet this requirement for mass spectral data, where the number of 

peaks typically far exceeds the number of samples, the data set must first be reduced by some 

method such as PCA prior to analysis by LDA.  

Partial least squares discriminant analysis (PLSDA) is a supervised, chemometric 

classification technique which also utilizes known class information when creating new 

composite variables.  In fact, Barker and Rayens16 have shown that PLSDA is essentially an

inverse-least squares approach to LDA and produces basically the same result, but with the 

advantage of performing the dimensional reduction along with classification in a single 

calculation.  As with LDA, the PLSDA model can be used to predict the class membership of 

additional samples.  

Soft independent modeling of class analogy (SIMCA) is a supervised, chemometric 

technique which models a data set with a collection of PCA models, one for each class in the 

data set. SIMCA is distinct from LDA and PLSDA in that each data class is modeled separately.  



Additional samples can be assigned a class by calculating the nearest class to a sample, defined

as the class model that results in a minimum distance of the sample to the mode.23  

Use of a decision tree is another common statistical method to predict class information 

from a large, complex data set.22 Decision trees, and the related technique of cluster analysis, are 

commonly used for analysis of large biological data sets. The construction of a decision tree is a 

fundamentally different type of analysis than those described above; rather than using linear 

combinations of variables to describe and classify the data set, a series of individual variables are 

chosen to create the tree and affect the classification.    

In this work, we have analyzed ToF-SIMS spectral data from increasingly complex 

biological samples using a variety of both chemometric and statistical multivariate analyses.  In 

order of increasing biological, and thus mass spectral, complexity, we have investigated 

monosaccharide isomers, pure proteins, protein mixtures, and mouse embryo tissues.  The 

varying complexity of the sample sets has shown that with increasing sample complexity, one 

needs increasingly sophisticated multivariate analyses to classify samples effectively.  The

comparison of different chemometric and statistical techniques has shown that no one of these 

analyses is universally better at classifying these disparate types of samples.  However, some 

types of multivariate analysis, namely PCA, PLSDA, and LDA, consistently perform better than 

others, including SIMCA and decision trees.

Experimental Section

Samples:

Monosaccharides: Experimental details of the monosaccharide analysis have been 

described elsewhere.7 Briefly, galactose, glucose, fructose, mannose, psicose, sorbose, and 

tagatose were obtained from Sigma (St.Louis, MO) and used without further purification.  Each 



sugar was diluted in Milli-Q purified water (18.2 MΩ; Millipore, Billerica, MA) to a

concentration of ~1 mg/mL, after which 1 µL was spotted on a silicon wafer and allowed to 

evaporate at room temperature.  All seven sugars were spotted on each of seven 1.25 × 1.25 cm

substrates.  Ten individual spectra were acquired per spot.  

Proteins: Myoglobin and cytochrome c from horse heart, lysozyme from chicken egg 

white, bovine insulin, and bovine albumin were obtained from Sigma and used without further 

purification.  Each protein was diluted in Milli-Q purified water to a concentration of ~1 mg/mL.  

Individual proteins solutions (1 µL) were spotted randomly on five 1.25 × 1.25 cm substrates 

with sixteen protein spots per substrate, using sequences drawn from a uniform distribution on 

the unit interval. MatLAB v. R2006b (MathWorks Inc., Natick, MA) was used to generate the 

random sequences. Five individual spectra were recorded per spot.

Protein Mixtures: Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, α-

chymotrypsinogen A from bovine pancreas, and carbonic anhydrase were obtained from Sigma 

and thyroglobulin, aldolase, and ferritin were obtained from Pharmacia Biotech (Piscataway, 

NJ).  All proteins were used without further purification.  Five protein mixtures were created, 

each with a common, complex protein background and one distinct protein component per 

mixture.  The common complex protein background consisted of equal concentrations of 

myoglobin, albumin, lysozyme,  α-chymotrypsinogen A, and glyceraldehyde-3-phosphate 

dehydrogenase.  One of cytochrome c, carbonic anhydrase, thyroglobulin, aldolase, or ferritin

was added to this background for a total concentration of every protein in each mixture of 

approximately 0.16mg/mL and a total protein concentration of ~1 mg/mL.  Randomized spotting 

was performed as described above. Five individual spectra were recorded per spot.



Mouse Embryos: Mouse embryo tissues were prepared as described elsewhere.12  

Briefly, three 16-day-old mouse embryos from three different dams were fixed in 4%

paraformaldehye for 36 hours and embedded in paraffin blocks using standard techniques. Four-

micron thick saggital sections were cut from each embryo using a Leica RM2165 microtome.  

The sections were placed on 1.25 × 1.25 cm silicon substrates and incubated at 40ºC overnight to 

soften the paraffin. The samples were then deparaffinized using xylene and 100% ethanol after 

which they were allowed to air dry.  The samples were stored in vacuum at 1×10−4 Torr for 24 

hours before ToF-SIMS analysis.  Ten spectra were recorded for each tissue type for each 

embryo section. 

ToF-SIMS Analysis: ToF-SIMS measurements were conducted on a PHI TRIFT III mass 

spectrometer (Physical Electronics USA, Chanhassen, MN).  Sugar, protein and mouse embryo 

data were acquired with a gold (197Au+) liquid metal ion gun operated at 22 kV while protein 

mixture data were acquired with a gallium (69Ga+) liquid metal ion gun operated at 15 kV.

Positive ion ToF-SIMS spectra were acquired over an area of 100 × 100 µm for sugar, protein 

and protein mixture samples. Positive ion ToF-SIMS images were acquired over an area of 300 

× 300 µm for mouse embryo tissues, after which one region of interest spectrum was extracted 

for the specific tissue type of interest. ToF-SIMS spectra were calibrated to the CH3
+, C2H3

+, 

and C4H7
+ peaks before further analysis.

Statistical and Chemometric Analyses:

Preprocessing: Each spectral data set was minimally preprocessed prior to multivariate 

analysis by unit-mass binning of peaks, choosing an appropriate peak set for the data, 

normalizing to the total ion count of the chosen peaks, and mean centering.  For the sugar data,

peaks between m/z = 12 and 500 were utilized with the exception of peaks due to sodium (m/z = 



23), potassium (m/z =39), and the silicon substrate (m/z = 28).  For the proteins and protein 

mixtures, peaks between m/z = 60 and 500 were utilized in order to exclude non-specific 

hydrocarbon peaks with up to four carbons.  In addition, peaks due to PDMS contamination (m/z

= 73, 147, 207, 221, and 281) were removed.  For the mouse embryo samples, the calcium peak 

(m/z = 40) and peaks between m/z = 60 and 500 were utilized with the exception of those 

contamination peaks identified from the background control spectra as described elsewhere.12  

Although there have been several recent publications on more sophisticated methods for 

preprocessing ToF-SIMS data,24-28 we chose simple and widely-used preprocessing steps for this 

study.  A thorough a comparison of preprocessing methods is beyond the scope of this current 

work. 

Multivariate Analyses:  The five different chemometric and statistical multivariate 

analyses were run using two standard software packages. MatLAB software v. R2006b 

(MathWorks Inc., Natick, MA) along with PLS Toolbox v. 4.1 (Eigenvector Research, Manson, 

WA) was used for PCA, PLSDA and SIMCA.  The R Environment for Statistical Computing29

was utilized for PCA, LDA, and a decision tree analysis (using the rpart package).  PCA was 

performed using both software packages and in all cases identical results were obtained.  

Cross-validation:  For any classification method one desires to know its generalizability, 

that is, not just how well it classifies the data with which it was trained, but how well it would do 

on a new data set.  We used cross-validation to estimate this generalization error for each of the 

classification methods studied.  Specifically, for each method, we repeatedly extracted a random

subset of the data to use as a test set and used the remaining data as a training set for reducing the 

data and building the classifier. After creating each classifier using the associated random 

training set, we then used the test set to estimate the misclassification rate. The average 



misclassification rate for 100 random test sets was reported as the estimated misclassification 

rate, and the standard deviation over the 100 test sets was reported as the standard error in 

estimating the misclassification rate.  We chose a test set size consisting of the nearest integer to

the square root of the total data set size. This test set size represents a compromise between 

choosing a test set size large enough to reduce the standard error in estimating the 

misclassification rate, while keeping the training set size large enough to build an accurate 

classifier.  

Linear Mixed Effects Modeling: To better understand the impact of variation arising 

from different spots of the same sample and different substrates, we have estimated the between-

substrate standard deviation and the within-substrate standard deviation by means of a linear 

mixed-effect model.30  The model used was the standard blocked one-way layout, containing a 

fixed effect for the samples and two nested random effects: one for sample substrates and one for 

the residual deviation within any given substrate. This analysis was performed for both the sugar 

and protein data sets.  Linear mixed effects modeling showed a non-negligible contribution to the 

residual deviation for both random effects. To alleviate the impact of these effects, the

placement of the sample spots on the silicon substrates was randomized as described for the 

protein and protein mixture experiments.  Due to the nature of the mouse embryo tissue samples, 

it was not possible to randomize the placement on the substrates, but careful analysis of the PCA 

results showed no obvious grouping due to substrate or sample effects. 

Results and Discussion

The nature of the spectral data produced by ToF-SIMS analysis is illustrated in Figure 1, 

which shows representative spectra from each of the four data sets.  These four spectra 



demonstrate the high degree of fragmentation produced by the SIMS ionization, as is evident 

from the large number of low molecular mass peaks.  In addition, the spectra from cytochrome c, 

a complex protein mixture, and a mouse rib (Figure 1 b,c,d) show the inherent complexity and 

similarity of the mass spectra derived from such complex biological samples.    



As is apparent from Figure 1, it is generally not possible by visual inspection of ToF-SIMS 

spectra of complex samples to classify a spectrum as arising from a particular sample of interest 

Figure 1. Representative ToF-SIMS spectra from the four data sets used for statistical analysis: a. glucose; b. 
pure cytochrome c; c. a mixture of albumin, myoglobin, lysosyme, α-chymotrypsinogen A,  glyceraldehyde -3-
phosphate, and cytochrome c; and d. a rib from a mouse embryo.



or even to identify completely the molecular fragments which vary most significantly between 

samples.  It is therefore necessary to utilize a suitable statistical analysis technique to gain these 

types of insights from the ToF-SIMS spectra.

As an example of a chemically challenging but biologically simple sample set, we 

recorded spectra from seven monosaccharide sugar isomers, galactose, glucose, fructose, 

mannose, psicose, sorbose, and tagatose.  The resulting well-controlled data set was analyzed 

using five different chemometric and multivariate statistical analyses.  As has been shown in 

previous work,7 PCA of these seven sugar isomers shows excellent grouping of spectra by 

isomer.  Based on the results of this unsupervised multivariate analysis, it is not surprising that 

the three supervised classification techniques, LDA, PLSDA, and SIMCA, are easily able to 

classify sugars by isomer with zero misclassification rate given a sufficient number of principal 

components (Figure 2). Note that while the compound variables created by LDA and PLSDA

are often referred to as latent variables, we have chosen to use the term “principal component” 

for all the analysis techniques for the sake of simplicity.

Cursory inspection of Figure 2 would seem to indicate that SIMCA is the best method for 

classifying the samples at low numbers of principal components.  However, because a SIMCA 

analysis calculates a separate PCA model for each sample class, one principal component in a 

SIMCA model is actually one for each class, or in this case 7 compound variables.  At seven 

principal components, both LDA and PLSDA are able to classify the sugar samples with no 

misclassification.  Based on our analysis, LDA following data reduction by PCA is able to 

perfectly classify the sugar samples using only four compound variables, making it the best of 

these methods for classifying the spectra of these sugar isomers.  It is interesting to note, given 

the similarity between the calculations performed for LDA and PLSDA,16 that LDA performs 



appreciably better in classifying this data set

with an intermediate number of principal 

components than does PLSDA. This is 

probably due to the fact that, as Barker and 

Rayens note, with PLSDA “there is no claim 

to minimizing misclassification probabilities” 

as there is for LDA.16  

While LDA, PLSDA, and SIMCA all 

give perfect classification results for the sugar 

isomer data set, the decision tree algorithm is less successful.  The decision tree produces an 

average misclassification rate of 0.0207 with a standard deviation of 0.0383 for 100-fold cross-

validation.  Perhaps more importantly, inspection of the tree produced by the recursive 

partitioning algorithm shows that this analysis provides less chemical insight than we had hoped 

(Figure 3).   First, we would expect that the 

sugars would be grouped according to their 

known chemical structures, with primary 

separation into pyranose and furanose 

groups. Instead, we see that sorbose is the 

first sugar to be grouped, while the 

remaining furanoses, fructose, psicose, and 

tagatose, are grouped together at the bottom 

of the tree. Second, the variables selected as 

the decision points are not, in many cases, 

Figure 2. Comparison of average rates of 
misclassification for ToF-SIMS spectra of seven 
monosaccharides using three different classification 
methods; LDA following PCA (blue diamonds), 
PLSDA (green circles), and SIMCA (red squares).  
Error bars represent one standard deviation.

Figure 3. Decision tree generated by recursive partitioning 
to classify sugar isomers based on their ToF-SIMS spectra.



either the most abundant fragments or even fragments specific to these monosaccharides, as 

demonstrated by the CH+ fragment (m/z=13) which defines the classification of fructose and 

psicose.  Interestingly, analysis by PCA has neither of these drawbacks: there is obvious 

separation into pyranose and furanose groups and the molecular fragments with the highest 

loadings on the first few principal components are identified sugar fragments.7 It is clear that in 

the case of the ToF-SIMS analysis of sugar isomers, the decision tree analysis is the least 

successful of the attempted methods, both in terms of classification and data interpretation.

We have applied these same data analysis techniques to spectra from five different pure 

proteins, samples which are more chemically different and of increasing biological complexity.

Figure 4a shows the scores plot producing the best grouping of proteins from a PC analysis of 

spectra from myoglobin, cytochrome c, lysozyme, insulin, and albumin. PCA is clearly able to 

distinguish among the ToF-SIMS spectra of these protein standards.  Not surprisingly, 

classifications by LDA, PLSDA, and SIMCA again produce excellent results with essentially 

zero misclassifications with 8 or more principal components.  It is notable that while more 

principal components are necessary for perfect classification with LDA and PLSDA than were 

needed for the sugar classification, the misclassification rate is lower for both of these methods at 

low numbers of principal components. It is also the case that the SIMCA analysis performs 

significantly worse on the proteins, with larger misclassification rates and much larger standard 

deviations. Once again, LDA following data reduction by PCA appears to be the best of these 

methods for classifying the spectra. The decision tree analysis of the protein data set produces 

an average misclassification rate of 0.023 with a standard deviation of 0.0351 for 100-fold cross-

validation.  As with the analysis of sugars, the decision tree analysis was less accurate for 



classification and provided no additional chemical insight. (The decision tree is available in 

supporting information.)  

While sugars and proteins are 

interesting biological molecules, we are 

primarily interested in understanding how 

statistical and chemometric analyses will be 

best applied to ToF-SIMS analysis of much 

more complex, native biological samples.  In 

order to create a well-controlled sample set 

which closely mimics the complexities of 

biological fluids, cells, and tissues, we created 

a set of protein mixtures such that each 

mixture contains a common, complex protein 

background and one distinct protein 

component.  These mixtures are described in 

detail in the experimental section.  Figure 5 

shows the results of the multivariate analyses 

of ToF-SIMS spectra of these complex protein 

mixtures.  

It is obvious from the best grouping obtained by principal component analysis (Figure 5a) 

that this set of complex protein mixtures is much more difficult to differentiate than are the pure 

sugars or proteins.  Nevertheless, PCA does provide some insight into the data, dividing the 

samples into distinct groupings, with mixtures containing aldolase and ferritin obviously 

Figure 4. Multivariate analyses of ToF-SIMS spectra 
of five pure proteins spotted on silicon substrates:  a. 
Scores plot from PCA data reduction; myoglobin (red 
triangles), cytochrome c (green stars), lysosyme (blue 
squares), albumin (cyan plusses) and catalase (black 
diamonds). Each point is a single spectrum.  Ellipses 
are 95% confidence ellipses. b. Comparison of 
average rates of misclassification using three different 
classification methods; LDA following PCA (blue 
diamonds), PLSDA (green circles), and SIMCA (red 
squares).  Error bars represent one standard deviation.



different from the other three. The mixture containing thyroglobulin is also reasonably well 

separated from those containing cytochrome c and carbonic anhydrase.  The PC analysis alone, 

however, is clearly insufficient for a complete analysis of this protein mixture data.  

Figure 5b details the analysis of the 

protein mixture samples using LDA, 

PLSDA, and SIMCA.  It is immediately 

obvious from the very high misclassification 

rates at lower numbers of principal 

components, and from the large numbers of 

principal components needed for good 

classification, that this data set is inherently 

more complex and difficult to analyze.  

However, even with the high sample 

complexity, misclassification rates of less 

than 2% can be achieved with a sufficient 

number of principal components.  In 

contrast to the pure sugars and proteins, 

PLSDA produces better classification results

for the protein mixtures with any number of 

principal components. The reason for this 

shift may be attributable to an increase in the 

similarity of the spectra in this case.16 The 

decision tree analysis of the protein mixture data produces an average misclassification rate of 

Figure 5. Multivariate analyses of ToF-SIMS spectra 
of five protein mixtures spotted on silicon substrates.    
a. Scores plot from PCA data reduction; Each mixture 
contains equal concentrations of albumin, myoglobin, 
lysosyme, α-chymotrypsinogen A and glyceraldehyde 
-3-phosphate in addition to one unique protein; 
cytochrome c (red triangles), thyroglobulin (green 
stars), aldolase (blue squares), ferritin (brown plusses) 
or carbonic anhydrase (black diamonds). Each point is 
a single spectrum.  b. Comparison of average rates of 
misclassification using three different classification 
methods; LDA following PCA (blue diamonds), 
PLSDA (green circles), and SIMCA (red squares).  
Error bars represent one standard deviation.



0.0756 with a standard deviation of 0.0739 for 100-fold cross-validation.  As for the other data 

sets, the decision tree analysis was less accurate for classification and provided no additional 

chemical insight. (The decision tree is available in supporting information.)

The final sample set we have analyzed consists of formalin-fixed, paraffin embedded 

mouse embryo tissues.  These samples represent the full complexity of the types of biological 

samples one would like to be able to study utilizing ToF-SIMS and multivariate analysis.  The 

results from PC analysis were reported previously,12 in which PCA of four tissue types, rib, 

brain, heart, and liver, shows good grouping of spectra by tissue.  Notably, PCA demonstrated

better differentiation of the four different tissue types than of the protein mixture standards.  This 

result is not surprising given the dissimilar types of tissues chosen for this analysis and the 

purposeful extreme similarity of the protein mixtures.   

The three supervised multivariate techniques also show that the mouse embryo tissues are 

less challenging to classify than the protein mixtures but more challenging than the pure proteins 

or sugars (Figure 6).  PLSDA and LDA perform 

equally well at classifying these tissue samples, 

with both methods producing less than 2% 

misclassification with a sufficient number of 

principal components.  SIMCA, however, 

performs much more poorly on the mouse data 

set, with misclassification rates around 5% for 

low numbers of principal components and 

increasing misclassification with increasing 

numbers of principal components.  It is not 

Figure 6. Comparison of average rates of 
misclassification for ToF-SIMS spectra of four tissues 
from paraffin-embedded mouse embryos using three 
different classification methods; LDA following PCA 
(blue diamonds), PLSDA (green circles), and SIMCA 
(red squares).  Error bars represent one standard 
deviation.



immediately obvious why the SIMCA results are so different for the mouse embryo tissues.  The 

decision tree analysis of the mouse embryo tissues produces an average misclassification rate of 

0.0776 with a standard deviation of 0.0634 for 100-fold cross-validation.  As for the other data 

sets, the decision tree analysis was less accurate for classification and provided no additional 

chemical insight. (The decision tree is available in supporting information.)

Conclusions

We conclude that principal component analysis is an excellent first step in examining 

ToF-SIMS spectral data of biological samples.  PCA is straightforward and quick to implement, 

easily understood, and produces a series of simple plots for examining the data. Furthermore, 

PCA provides insight both into the similarities and differences among sample groups and into the 

mass spectral peaks which are most important for determining group differences.  These insights 

can ultimately be utilized to gain a molecular understanding of how samples differ.  PCA is, 

however, insufficient for a thorough analysis of all but the simplest sample sets.  As we have 

shown, the ability of PCA to distinguish among sample groups diminishes as the similarity of the 

groups and the complexity of the samples increases.  Furthermore, PCA does not provide for a 

statistically rigorous classification of future unknown samples into sample classes.  

Among the four classification methods utilized in this study, the decision tree analysis is 

clearly the least successful for analysis of ToF-SIMS spectra.  The rate of misclassification was 

relatively high when compared to the other methods, groupings produced by the recursive 

partitioning did not organize samples according to known sample similarities, and the variables 

selected as the decision points were not, in most cases, either the most abundant fragments or 

fragments specific to the samples of interest.  The poor results obtained by the decision tree 



analysis most likely arise from the fact that this analysis uses a series of univariate decision 

points, rather than a decision based on a multivariate set of compound variables, thus utilizing 

only a small subset of the information contained in the mass spectral data. 

Classification analysis by SIMCA was also less successful than some of the other 

methods.  As SIMCA is essentially multiple applications of PCA, it should not be surprising that 

it shares some of the disadvantages of PCA for analysis of more complex samples.  Specifically, 

the ability of SIMCA to accurately classify samples decreased as the complexity of the samples 

increased.  Therefore it is concluded that SIMCA is not well suited for analyzing spectral data 

sets from native biological samples,

In contrast, both PLSDA and LDA following data reduction by PCA produced excellent 

classification results for all four data sets examined.  While the misclassification rates did 

increase for the most complex samples, rates of less than 2% misclassification were achieved.  

Given the underlying similarities of these two methods, it is somewhat surprising that the results 

were not always equivalent, especially with an intermediate number of compound variables 

calculated. However, the best classification rate achieved with the two methods was in every 

case very similar. From this study, we conclude that, if computation resources allow, attempting 

both PLSDA and LDA and comparing the results would be ideal.  However, the choice of only 

one of these two would reduce analysis time while not unduly reducing the likelihood of 

excellent classification results.  We further note that using these multivariate analysis techniques 

to analyze ToF-SIMS spectra is not in any way specific to the analysis of biological samples and 

should also be well suited to the analysis of other complex sample systems such as inorganic and 

synthetic polymer samples.



As the complexity of the samples increases, so must the sophistication of the 

chemometric or statistical analysis methods employed to understand and classify the ToF-SIMS 

spectra.  It is not possible, therefore, to designate one multivariate analysis technique as the 

“best” for analysis of ToF-SIMS spectra of all biological samples; rather it will be necessary to 

evaluate a few appropriate techniques for each application. This study demonstrates that ToF-

SIMS spectral analysis in conjunction with common statistical and chemometric techniques can 

be effectively utilized to classify complex biological samples and opens the possibilities for new 

applications including classification of subtly different biological samples that may provide

insights into cellular processes, disease progress, and disease diagnosis.
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